משוואות ממעלה ראשונה עם נעלם אחד

באיזו שיטה היית רוצה ללמוד?
תרגול הסבר וידאו
🏆תרגולים מומלצים עבורך

מהי משוואה עם נעלם?

משוואות הן ביטויים אלגבריים שמכילים מספרים ונעלמים. חשוב להבחין בין שתי הקבוצות הללו: מספרים הם ערכים קבועים ואילו נעלמים, כשמם כן הם, אינם ידועים (לפחות בהתחלה) וברוב המקרים אנו מתבקשים למצוא אותם.

מה עושים עם משוואה?

כאשר אנו מקבלים תרגיל המכיל משוואה עם נעלם אחד, המטרה שלנו היא לפתור את המשוואה, כלומר למצוא פתרון למשוואה. מהי הכוונה בלמצוא פתרון למשוואה? הכוונה היא למצוא את ערך הנעלם, כך ששני צידי המשוואה יהיו שווים זה לזה

כאשר מדובר במשוואות שיש להן את אותו פתרון, ניתן לדבר על משוואות שקולות

כאשר המשוואות ממעלה ראשונה מכילות שברים, והנעלם נמצא במכנה, חשוב לקחת בחשבון גם את תחום ההצבה של המשוואה

העקרונות והשיטות לפתרון של משוואות ממעלה ראשונה עם נעלם אחד

 

בחן את עצמך במשוואות ממעלה ראשונה עם נעלם אחד !

בחנים ותרגולים נוספים

תרגילים בסיסיים במשוואות ממעלה ראשונה עם נעלם אחד (3)

צפו במספר דוגמאות לתרגילים בנושא משוואות ממעלה ראשונה עם נעלם אחד


תרגולים מתקדמים (69)

אחרי הדוגמאות הבסיסיות, הגיע הזמן לתרגילים קצת יותר מאתגרים 😊


הכיתה התקדמה במשוואות ממעלה ראשונה עם נעלם אחד ואתם עדיין מאחור?

צוות לימוד נעים כאן עבורכם :)
בואו ללמוד משוואות ממעלה ראשונה עם נעלם אחד עם מאות סרטונים, שאלות ודוגמאות.


דוגמאות ותרגול

תרגיל מס' 1 :

פתרו את המשוואה הבאה:

\(12(2X-3)=-4(3-4X)\)

 

פתרון:

על מנת לפתור את המשוואה נפתח בשלב הראשון את הסוגריים ונקבל:

\(24X-36= -12+16X\)

בשלב הבא נעביר אגפים כך שבאגף השמאלי של המשוואה יופיעו כל הנעלמים, ואילו באגף הימני של המשוואה יופיעו המספרים. יש לזכור, שבעת העברת אגפים, יש לשנות את הסימן של האיבר:

\(24X-16X=-12+36\)

בשלב הבא נכנס איברים דומים ונקבל:

\(8X=24\)

כעת, על מנת למצוא את ערך הנעלם נחלק את שני אגפי המשוואה ב-8 ונקבל:

\(8X=24\) \(/8\)

\(X= 3\)

פתרון המשוואה הוא \(X= 3\)

 

תשובה: 

\(X= 3\)

 

תרגיל מס' 2: 

פתרו את המשוואה הבאה:

\(8(2-5X)-12(1-X)=0\)

 

על מנת לפתור את המשוואה נפתח בשלב הראשון את הסוגריים ונקבל:

\(16-40X-12+12X=0\)

בשלב הבא נעביר אגפים כך שבאגף השמאלי של המשוואה יופיעו כל הנעלמים, ואילו באגף הימני של המשוואה יופיעו המספרים. יש לזכור, שבעת העברת אגפים, יש לשנות את הסימן של האיבר:

\(-40X+12X= 12-16\)

בשלב הבא נכנס איברים דומים ונקבל:

\(-28X=-4\)

כעת, על מנת למצוא את ערך הנעלם נחלק את שני אגפי המשוואה ב-(28-) ונקבל:

\(-28X=-4\)  \(/-28\)

\(X=\frac{4}{28}=\frac{1}{7}\)

תשובה: 

\(X=\frac{1}{7}\)

 

תרגיל מס' 3: 

פתרו את המשוואה הבאה:

\(-6(-X-1)+10(2-X)=16\)

 

על מנת לפתור את המשוואה נפתח בשלב הראשון את הסוגריים ונקבל:

\(6X+6+20-10X=16\)

בשלב הבא נעביר אגפים כך שבאגף השמאלי של המשוואה יופיעו כל הנעלמים, ואילו באגף הימני של המשוואה יופיעו המספרים. יש לזכור, שבעת העברת אגפים, יש לשנות את הסימן של האיבר:

\(6X-10X=16-6-20\)

בשלב הבא נכנס איברים דומים ונקבל:

\(-4X=-10\)

 

כעת, על מנת למצוא את ערך הנעלם נחלק את שני אגפי המשוואה ב-(4-) ונקבל:

\(-4X=-10\)  \(/-4\)

\(X=\frac{10}{4}=2.5\)

תשובה:

\(X=2.5\)